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Abstract

A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel

computer architecture has been developed for the Poseidon ocean circulation model and tested

with a Pacific Basin model configuration.  There are about two mill ion prognostic state-vector

variables.  Parallelism for the data assimilation step is achieved by regionalization of the

background-error covariances that are calculated from the phase-space distribution of the

ensemble.  Each processing element (PE) collects elements of a matrix measurement functional

from nearby PEs.  To avoid the introduction of spurious long-range covariances associated with

finite ensemble sizes, the background-error covariances are given compact support by means of a

Hadamard (element by element) product with a three-dimensional canonical correlation function.

The methodology and the MvEnKF implementation are discussed.  To verify the proper

functioning of the algorithms, results from an initial experiment with in situ temperature data are

presented.  Furthermore, it is shown that the regionalization of the background covariances has a

negligible impact on the quality of the analyses.

The parallel algorithm is very efficient for large numbers of observations.  On a platform with

distributed memory, individual-PE memory, rather than speed, dictates how large an ensemble

can be used in practice.
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1 Introduction

a. Background and motivation

Many of the early advances in ocean data assimilation have emerged from practical applications

in the tropical Pacific.  These applications have been driven by the need to initialize the ocean

state for coupled atmosphere-ocean forecasts of the El Niño-Southern Oscil lation (ENSO)

phenomenon.  In addition, hindcast estimates of the ocean state have been useful in diagnosing

the evolution of El Niño.  Over much of the world's oceans, large-scale assimilation is facilitated

by the availabil ity of satellite altimetry because of the sparsity of in situ data.  However, in the

tropical Pacific, the ocean observing system was vastly improved by the deployment of the

Tropical Atmosphere-Ocean (TAO) array of moored buoys (e.g., McPhaden et al. 1998) to

support seasonal-to-interannual (SI) climate studies and prediction.  One of the major successes

of the Tropical Ocean Global Atmosphere (TOGA) program was the emergence of coupled

physical models (as opposed to statistical models) with some prediction skil l (e.g., Chen et al.

1995; Ji et al. 1996).

Recently, the NASA Seasonal-to-Interannual Prediction Project (NSIPP) has been established to

further the utilization of satellite observations for prediction of short term climate phenomena.

NSIPP undertakes routine forecasts in a research framework with global coupled ocean-

atmosphere-land surface models.  The initial implementation has used an ocean analysis system

employing a simple assimilation methodology—a univariate optimal interpolation (UOI, e.g.,

Troccoli et al. 2001)—with the Poseidon isopycnal ocean general circulation model (OGCM,

Schopf and Loughe 1995; Konchady et al. 1998; Yang et al. 1999).  Like several other ocean

data assimilation systems currently in use at other institutions (e.g., Ji and Leetma 1997), it is
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based on the assumption that the forecast-error covariances are approximately Gaussian and that

the covariances between the temperature-field errors and the salinity-field and current-field

errors are negligible.

Largely due to the high-resolution coverage and accuracy of the TAO measurements, the UOI is

effective in improving surface and sub-surface temperature field estimates in the equatorial

region in comparison with the estimates obtained without temperature assimilation.  As a result,

its introduction into the NSIPP coupled forecasting system has resulted in significant

improvements in the coupled model’s hindcast skill of Niño-3 temperature anomalies.

The UOI has the advantage of being inexpensive in terms of computing resources.  Nevertheless,

it suffers from three major shortcomings.  The first shortcoming is that it can only be used to

assimilate measurements of a model prognostic variable.  The UOI’s second shortcoming is that

it does not use any statistical information about the expected inhomogeneous distribution of

model errors.  The third shortcoming is that it is based on a steady state error-covariance model

which gives the same weight to a unit innovation regardless of how accurate the ocean-state

estimate has become as a result of previous analyses.  Directly linked to this shortcoming is the

failure to provide time-dependent estimates of the model errors.

In response to the first two shortcomings, a parallel multivariate OI (MvOI) system has been

implemented.  The MvOI uses steady state estimates of the model-error statistics computed from

ensemble runs of the OGCM in the presence of stochastic atmospheric forcing from Monte Carlo

simulations (Borovikov and Rienecker 2001).  Yet, the MvOI cannot adjust to dynamically
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evolving error statistics.  A parallel multivariate ensemble Kalman filter (MvEnKF) has been

developed to address this shortcoming.  This paper discusses its design, implementation and

initial testing.

b. Overview of the ensemble Kalman filter

Although the Kalman filter (Kalman 1960) and its generalization to nonlinear systems, the

extended Kalman filter, are statistically optimal sequential estimation procedures that minimize

error variance (Daley 1991; Ghil and Malanotte-Rizzoli 1991; Bennett 1992; Robinson et al.

1998), they cannot be used in the context of a high-resolution ocean or atmospheric model

because of the prohibitive cost of time stepping the model-error covariance matrix when the

model has more than a few thousand state variables.  Therefore, reduced-rank (e.g., Cane et al.

1996, Verlaan and Heemink 1997) and asymptotic (e.g., Fukumori and Malanotte-Rizzoli 1995)

Kalman filters have been proposed.  Evensen (1994) introduced the ensemble Kalman filter

(EnKF) as a Monte Carlo-based alternative to the traditional Kalman filter.  In the EnKF, an

ensemble of model trajectories is integrated and the statistics of the ensemble are used to

estimate the model errors.  Closely related to the EnKF are the singular evolutive extended

Kalman filter (Pham et al. 1998) and the error-subspace statistical estimation algorithms

described in Lermusiaux and Robinson (1999).

Evensen (1994) compared the EnKF to the extended Kalman filter in twin assimilation

experiments involving a two-layer quasigeostrophic (QG) ocean model on a square 17 × 17

grid.  Evensen and van Leeuwen (1996) used the EnKF to process GEOSAT altimeter data into a

two-layer, regional QG model of the Agulhas current on a 51 × 65 grid.  Houtekamer and
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Mitchell (1998) and Mitchell and Houtekamer (2000) used the EnKF in identical-twin

experiments involving a three-level, spectral QG model at triangular truncation T21 and

parameterized model errors.

Keppenne (2000, hereafter K00) conducted twin experiments with a parallel MvEnKF algorithm

implemented for a two-layer, spectral, T100 primitive equation model with parameterized model

errors.  With about 2 × 105 model variables, the state-vector size was small enough in this

application to justify a parallelization scheme in which each ensemble member resides in the

memory of a separate CRAY T3E processor (hereafter processing element: PE).  To parallelize

the analysis, K00’s algorithm transposes the ensemble across PEs at analysis time, so that each

PE ends up processing data from a sub-region of the model domain.  The influence of each

observation is weighted according to the distance between that observation and the center of each

PE region.

To filter out noise associated with small ensemble sizes, Houtekamer and Mitchell (2001)

developed a parallel EnKF analysis algorithm that applies a Hadamard (element by element)

product (e.g., Horn and Johnson 1991) of a correlation function having local compact support

with the background-error covariances.  They tested this analysis scheme on a 128 × 64

Gaussian grid corresponding to a three-level QG model using randomly generated ensembles of

first-guess fields computed ahead of time.  The benefits of constraining the covariances between

ensemble members using a Hadamard product with a locally supported correlation function has

also been investigated by Hamill and Snyder (2000) in the context of an intermediate QG

atmospheric model.



6

In this paper, we build upon the contributions made by each of the above-mentioned studies to

implement a parallel MvEnKF for the Poseidon OGCM. Initial tests are undertaken with a 20-

layer, Pacific basin configuration of the model with about two mill ion state variables.  The

system noise is accounted for in a manner similar to that used in K00, by including a stochastic

component in the forcing fields.  Following Houtekamer and Mitchell (2001), an element-by-

element product with an idealized three-dimensional compactly supported correlation function is

used to remove spurious long-range signals from the background-error covariances.

c. Organization of the following Sections

The remainder of this paper is concerned with the parallel MvEnKF design for the Poseidon

OGCM.  The model is briefly discussed in Section 2 and the algorithms are presented in Section

3.  The scalability of the algorithms and the effect of distributing the analysis calculations

between PEs are discussed in Section 4, where an initial test of the MvEnKF is conducted in the

context of TAO-temperature data assimilation.  Section 5 contains a summary.

A complete description of the algorithms and of the multivariate data assimilation system is

available under the form of a NASA technical report (Keppenne and Rienecker 2001a, hereafter

KR01a).  The application of the MvEnKF to the assimilation of altimeter data into Poseidon is

discussed in Keppenne and Rienecker (2001b, hereafter KR01b).  Its application to the

assimilation of TAO temperature data including the impact of the assimilation on the model

currents, salinity and sea surface height (SSH) are the focus of another article in which the
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MvEnKF is also compared to the UOI currently used to initialize the NSIPP SI forecasts

(Keppenne and Rienecker 2001c, hereafter KR01c).

2 The Poseidon parallel ocean model

a. Model summary

The Poseidon model (Schopf and Loughe, 1995) is a finite-difference reduced-gravity ocean

model which uses a generalized vertical coordinate designed to represent a turbulent, well-mixed

surface layer and nearly isopycnal deeper layers.  Poseidon has been documented and validated

in hindcast studies of El Niño (Schopf and Loughe 1995) and has since been updated to include

prognostic salinity (e.g., Yang et al. 1999).  More recently, the model has been used in a

numerical study of the surface heat balance along the equator (Borovikov et al. 2001) and in an

examination of ENSO and its mechanisms during the 1990s (Yuan et al. 2001).

Explicit detail of the model, its vertical coordinate representation and its discretization are

provided in Schopf and Loughe (1995).  The prognostic variables are layer thickness,

h(λ, θ, ζ, t), temperature, T(λ, θ, ζ, t), salinity, S(λ, θ, ζ, t), and the zonal and meridional current

components, u(λ, θ, ζ, t) and v(λ, θ, ζ, t), where λ is longitude, θ latitude, t time and ζ  is a

generalized vertical coordinate which is 0 at the surface and increments by 1 between successive

layer interfaces.
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Following Pacanowski and Philander (1981), vertical mixing is parameterized through a

Richardson number-dependent mixing scheme implemented implicitly.  An explicit mixed layer

is included with a mixed layer entrainment parameterization following Nii ler and Kraus (1977).

A time-splitting integration scheme is used whereby the hydrodynamics are done with a short

time step (15 minutes), but the vertical diffusion, convective adjustment and filtering are done

with coarser time resolution (half-daily).

b. Model setup

The version of Poseidon used here has been parallelized as in Konchady et al. (1998) using the

same message-passing protocol and 2D horizontal domain decomposition used by Schaffer and

Suarez (1998) for the NSIPP-1 atmospheric general circulation model.

The experiments of Section 4 use a 20-layer Pacific basin version of the parallel model with

uniform 1º zonal resolution.  The meridional resolution varies between 1/3º at the equator and 1º

in the extratropics.  A solid boundary is imposed at 45º south.  There, a no-slip condition is used

for the currents and a no-flux condition is used for mass, heat and salinity.

There are 173 × 164 × 20 grid boxes, of which 28% are situated over land, resulting in a total of

2.0422 × 106 individual prognostic variables.  A 16 × 16 PE lattice is used as shown in Figure 1.

The PEs located over land are virtual PEs which do not take part in the ensemble integrations

and analyses.
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Figure 1.  Horizontal domain decomposition for the Pacific model.  The thin lines delineate grid

cells.  The thick lines correspond to the boundaries of each PE box’s PE-private area on the

16 × 16 PE lattice.  Each dark circle corresponds to a TAO mooring.
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Figure 2 illustrates the horizontal setup for one PE box.  Locally within the box, the grid cells are

numbered Ii ≤≤1 , zonally and Jj ≤≤1 , meridionally, from the box’s lower-left, southwest

corner.  In order to minimize the communication overhead in the horizontal differencing of the

model equations, the PE boxes overlap.  The overlapping regions, called halo regions, have

width i1 – 1 to the West, I – i2 to the East, j1 – 1 to the South and J – j2 to the North.  The PE-

private regions are thus defined by 21 iii ≤≤  and 21 jjj ≤≤ .

� � � � �

� � � � � � � � � �

    
� � � � �

� ���

� � ��	� �

�
�
�

Figure 2.  Schematic setup for one PE.  The halo regions are colored gray.  The thin lines

delineate grid cells.  The thick lines delimit the halo regions and PE boundaries.  In this example,

I = J = 9, i1 = j1 = 3 and i2 = j2 = 7.
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3 Assimilation methodology

a. Horizontal domain decomposition

Since the version of Poseidon used here is parallelized, the same domain decomposition used to

run the model can be used in the analyses, provided the background error-covariance matrix,

fP , is locally approximated.  This simpli fication  avoids costly ensemble transpositions across

PEs.  Thus, the ensemble is distributed so that the memory of each PE contains the same

elements of each ensemble member’s state vector.  These elements correspond to every variable

contained within the PE boxes, the PE-private portions of which are visible in Figure 1.  This

decomposition is used for the ensemble integrations as well as for the analyses.

b. Assimilation on geopotential surfaces

The temperature measurements from each TAO mooring are recorded at specific depths which

are fairly consistent between moorings.  Since Poseidon uses an isopycnal vertical coordinate,

the model fields must be interpolated to the latitude, longitude and depth of each observation.

When the UOI was implemented, the choice was made to treat the temperature observations in

the usual (λ, θ, z) coordinate system in light of the absence of corresponding salinity

observations.  To maintain compatibility with the UOI which interpolates model fields vertically

to a series of pre-specified depths (hereafter levels) prior to each analysis, the same approach is

used here and the background covariances are calculated on levels rather than on layers.

Therefore, the T, S, u and v  fields are converted from isopycnals to levels and the analysis

increments are calculated on the levels before being mapped back to the isopycnals.  Sixteen

levels are used in Section 4 and in KR01b-c.
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The above scheme results in only T, S, u and v being updated.  The layer thicknesses, h, are left

unchanged by the assimilation.  The procedure allows the model to dynamically recalculate h

from the new density distribution and the target interface buoyancies, as it does at every time

step (see Schopf and Loughe 1995).

 z

T

 zk

 z

(ζ = l+0.5, Tl+1)

 ζ = l+1

 ζ = l

 ζ = 1

(ζ = l-0.5, Tl)

Figure 3.  Mapping of the model temperature field to a specified level, z = zk.  Within the current

grid cell , zk is contained between the layer interfaces ζ = l and ζ = l+1. In the model

discretization, only the layer-average temperature matters.  Yet, to avoid ambiguities when more

than one specified level pass through the same layer in the grid cell, the field is interpolated

linearly as shown.

Since only the layer-average value of T, S, u and v in each vertical grid box (i,  j,  l) within grid

cell (i,  j) appear in the model equations, the mapping from isopycnals to levels could be made by

assigning to a given field at (λij, θij, zk).the value of the same field at (λij, θij, l).  However, if the
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mapping were performed in this manner, ambiguities would arise when several levels pass

through the same layer at (λij, θij).  A possible consequence is the singularity of the analysis

equations of Section 3e in the (λ, θ, z) coordinate system.  To avoid this problem, the mapping is

made as though the vertical variations of the field were piecewise linear, with the discontinuities

in the slope occurring in the middle of the layers.  This is illustrated in Figure 3 for the

temperature field.

c. Ensemble size

With the MvEnKF, PE memory imposes constraints on both the domain decomposition and the

ensemble size.  The Pacific basin version of Poseidon is typically run on 64 PEs.  The goal is for

the MvEnKF runs to be done on a few times as many PEs.  In this study, 256 PEs are used and

the memory available on these PEs imposes a limit of about 40 ensemble members on the

platform currently used for the production forecasts (1024-PE CRAY T3E-600 with 128MB

local RAM per PE).  Encouraging results have been obtained with comparably sized ensembles

by Mitchell and Houtekamer (2000) with a three-level QG model and by K00 with a two-layer

shallow water model.  The issue of whether the MvEnKF perform as well as or better than the

UOI with even as few as 40 ensemble members is touched upon in Section 4a and examined in

depth in KR01c.

d Decomposition of analysis between PEs

The small ensemble size introduces the need to filter out spurious long-range correlations when

the background covariances are computed.  Following Houtekamer and Mitchell (2000) and a

suggestion by Gaspari and Cohn (1999), this filtering is achieved through a Hadamard product
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(i.e. BA •  such that }{ ijijij BABA =• ) of the error-covariance matrices with a local compactly

supported correlation function.  This function is the product of a horizontal correlation function,

Ch( )12(
hr ), )12(

hr  = [(λ2 - λ1)2/lλ + (θ2 - θ1)2/lθ]
0.5, and a vertical correlation function, Cv( )12(

vr ),

)12(
vr  = |z2 - z1|/lz, where (λi, θi, zi) are the coordinates of point i.  In this study, 0CCC vh == ,

where 0C  is defined by (4.10) of Gaspari and Cohn (1999).  The normalization is such that

2,0)(0 ≥= rrC .  The correlation scales used in Section 4 and in KR01c for the assimilation of

TAO temperature data are lλ = 30º, lθ = 15º and lz = 500m.  Shorter correlation scales give better

results when gridded altimeter data are assimilated (KR01b).

2lθ

2lλ

�

� 

i2j1

�

Figure 4.  Domain decomposition for the analysis.  The outer rectangle delimits the area, � ,

from which the data assimilated on one PE are collected.  The innermost rectangle depicts the

boundary of the PE-private area, � . The ellipse delimits the influence region of the PE-private

area’s southeastern corner cell, (i2, j1).  The shaded area contains the ellipses for all grid cells,

(i, j), contained in � .  The region �   contains all the PE’s grid cells including the halo regions.
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Although the TAO temperature data assimilated in Section 4 are suff iciently few (about 600 at

each analysis) for each PE to process them all , an approach whereby each PE processes data

from a sub-region of the model domain is used.  When more numerous data are assimilated, such

as in KR01b, the regionalization becomes a necessity.

Besides the obvious efficiency gain in a parallel environment, another justification for

decomposing the analysis is that the compactly supported background covariances result in the

data that directly (i.e., through the measurement operator) influence the state variables within

each grid cell being contained within an ellipse with semi axes 2lλ and 2lθ .  Taking advantage of

this fact, the region from which the observations assimilated on each PE are collected is chosen

to be the smallest rectangle, with sides λi2j1 - λi1j1 + 4lλ and θi1j2 - θi1j1 + 4lθ , containing all the

ellipses that correspond to the PE-private grid cells of this PE.  This is illustrated in Figure 4.

e. Analysis procedure

Without the Hadamard product of the background-error covariances with the compactly

supported correlation function, the EnKF analysis can be written as
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In (1) and throughout this discussion, uppercase boldface symbols represent matrices, lowercase

boldface symbols represent vectors and lowercase regular (i.e., not bold) symbols denote scalar

variables.  The vector, d (nd × 1) contains nd observations, ix  (nx × 1), 1 �  i �  m, is the ith

ensemble state vector of length nx and m stands for the ensemble size.  The superscripts a and f

refer to the analyzed state and the forecast, respectively, ΞΞ is a smoothing operator (Section 3h)

and < > denotes an ensemble average.  The vectors iy  (nx × 1) and il  (nd × 1) are columns of the

matrices Y (nx × m) and L (nd × m) respectively, and )(x
�

is a measurement operator which

relates the state vector to the observations.  Matrix W (nd × nd) is the observation-error

covariance matrix.  It includes measurement errors as well as representation errors.  The

representer matrix, R = L LT, maps the background-error covariance matrix, fP (nx × nx), to the

error subspace of the measurements.  The elements of ib are the representer-function amplitudes

used to update ix .

The nd × 1 vector, i

f

ii exydz ++−= )(
�

 in (1c), contains the innovations with respect to the ith

ensemble member.  Prior to their calculation, ΞΞ is applied to smooth ix .  Following Burgers et

al. (1998), ie  is a random perturbation chosen such that 0=ie  and Wee =T
ii .  Its role is to

maintain the influence of observation uncertainty in the error covariances estimated directly from

the ensemble so that these covariances are consistent with the theoretical estimates.  Its inclusion

helps prevent the ensemble from collapsing resulting in a systematic error underestimation.



17

When )(x
�

is a linear operator and ΞΞ is an identity mapping, (1) simplifies to the usual Kalman

filter analysis equations (e.g., Gelb, 1974) applied to update each ensemble member in turn.

When the Hadamard products with the compactly supported correlation function are introduced

and when the subscript ranges are explicitly written down, (1c) and (1d) are replaced by
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where �  and  !#"%$&"'!(!#"*),+-"/.10,2435"7698:0<;:0&=>"?2A@B@>"%!(+B!#;-C*DE.F0G;5$H0JIK;L3-"/.10<;M!N)PO%@BCQ0&;:0&=B" Hadamard product

of two matrices, and C (nd × nd) is a compactly supported correlation matrix whose elements are

defined by (2a), where the indices p and q refer to the data wp and wq.  The components of the

nd × 1 vector k
R  defined by (2c) contain idealized correlations between the (λ, θ, z) coordinates,

of grid box k and the coordinates of each measurement.  To simplify the notation, only one

subscript is used to identify the grid box.  The index, boxnk ≤≤1 , thus loops over the three

dimensions of the (λ, θ, z) coordinate system.  The m × 1 vector, },,{ 1 mkkk yy S=y , contains

smoothed deviations from the ensemble mean of the m ensemble state vectors in the kth grid box.

It is thus a single row of matrix Y.  With the MvEnKF, iky  actually has four components, i.e.,
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{ } { } ).,,,,,,(
kikik vuSTvuSTy −= T

The m × 1 vector, ik
U , contains the weights with which the elements of ky in the kth grid box,

{ }ikvuST ,,, , are combined to update the ith ensemble member.  In each grid box, the analysis

update, (2c-e), involves m matrix-vector multiplication of TL by ki Vb •  (2d).  If the analysis

calculations were not distributed as explained in Section 3g, or if the observations allowed to

influence the variables of each grid box were not limited to a sub-region of the entire domain as a

result of imposing compactly supported background covariances, these multiplications would be

very costly.  For the Poseidon model distributed across 256 PEs, they correspond to a tolerable

fraction of the total cost of the MvEnKF.  For example, when TAO temperature data are

assimilated every five days as in Section 4, the ensemble integration takes about 1100 seconds

per analysis cycle while the analysis takes about 380 seconds.  Of these, about 270 seconds are

spent in the matrix-vector products of (2d).

f. System-noise representation

The theory of the Kalman filter (e.g., Gelb, 1974) assumes that the first- and second-order

statistics of the errors in the model and external forcing are known.  Higher-order statistics are

neglected.  Let the evolution of the true state be represented by

)3(),,(),( tt
t

x
W

xF
x +=

∂
∂
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where ξξ combines the model errors and forcing errors, and is commonly known as system noise

or process noise. The vector F (nx × 1) contains the right hand sides of the model partial

differential equations which includes the model hydrodynamics, physics and forcing.  It is

assumed that the model and forcing are unbiased, i.e. 0),( =tx
X

, and that the ξξ vectors are

uncorrelated in time:

)4(),(),(),(),( lklkllkk tttt −= δxx
Y

x
Z

x
Z

where the system-noise covariance matrix, ΓΓ, is assumed known.  Of course, the unbiased

assumption is rarely correct in practice.  This is especially true with ocean models in which the

thermocline layer is usually too diffuse.  In an effort to account for the model bias, an algorithm,

derived from Dee and Da Silva (1998), to estimate and correct systematic model errors has

recently been implemented into the MvEnKF code.  However, it is not used in this study.

In meteorological and oceanographic data assimilation, the statistics of ξξ are generally unknown

and are the object of parameterization.  Adaptive Kalman filters that simultaneously estimate the

state and system-noise statistics have been developed.  Blanchet and Frankignoul (1997)

summarize and compare several adaptive filtering algorithms.  In practice, the prohibitive cost of

the adaptive filters has limited their application in meteorology and oceanoraphy.

Motivated by the current lack of information about the model-error statistics, the system-noise is

represented solely by modeling the errors in the surface wind stress and heat flux forcing.  A
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system-noise representation in which not only the forcing errors but also the model errors are

parameterized is in development.

Because of the focus on SI variabil ity, the forcing errors (uncertainties) are modeled on those

time scales, with each ensemble member being forced by a monthly mean perturbation of the

monthly mean basic state.  The basic state is the superposition of the climatological seasonal

cycle with interannual anomalies.  The climatology is provided by Special Sensor Microwave

Imager (Atlas et al. 1996) winds and Earth Radiation Budget Experiment heat flux data.  The

interannual anomalies are obtained by integrating the atmospheric model over observed SST data

(Reynolds and Smith 1994).  The perturbations applied are due entirely to internal atmospheric

chaos and are generated by starting the atmospheric integrations at different times.  By using the

same SST, each member of the atmospheric ensemble used to force the ocean ensemble has the

same SI phase.  The spread of the atmospheric ensemble is meant to be representative of the

uncertainty of the forcing products used to force the model in non-ensemble runs.

g. Parallel algorithm

1) Preliminaries

This section discusses what steps are involved in the parallel MvEnKF analyses from the point of

view of one PE, hereafter referred to as the current PE.  This overview starts after the current PE

has obtained the observations, [d , made within its PE-private region ( \  in Fig. 4).  The position

of each PE on the lattice is stored in the nPE × mPE array PE, where nPE and mPE are the number

of PEs along the zonal and meridional directions, respectively.  In Section 4 and in KR01b-c, nPE

= mPE =16.  The total number of PEs is NPE.  Every PE has a copy of PE.
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All information exchanges between PEs use message-passing functions from the Goddard Earth

Modeling System (GEMS, Schaffer and Suarez 1998) library.  The GEMS functions provide a

high-level, object oriented interface to the CRAY native SHMEM (shared memory)

communication library.

The analyses rely principally on two GEMS functions which are mentioned here in template

form in order to simplify the discussion.  The first function, pe_collect(…), is used to

collect data from either the entire PE array or from the row or column of PE which contains the

current PE.  The second function, halo(…), updates its array argument in the halo regions of

each PE (gray areas in Fig. 2), after each PE has modified its PE-private elements of this array

corresponding to the inner rectangle in Figure 2.

2) Algorithm

• Step 1: Vertical interpolation of the T, S, u and v fields from the model layers to the analysis

levels as explained in Section 3b.

• Step 2: Calculation of the anomalies with respect to the ensemble mean over the entire

domain of the current PE (area ]   in Fig. 4), .1, mi
ff

i ≤≤− ^^ xx

• Step 3: Calculation of îy , the current PE’s portion of iy  in (1a) .  Prior to each zonal

application of the smoothing operator, ΞΞ, a call to  pe_collect( ) is used to collect,

from the PEs listed in column jc of PE, the state elements required to run a recursive filter
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(Section 3h).  The same holds for each meridional application of the filter, where row ic of

PE is now involved.

• Step 4: Identification of the PE-private data required by the other PEs.  First,

pe_collect( ) is used to collect the longitudes and latitudes of each PE’s southwestern,

southeastern, northwestern and northeastern corner grid cells.  Using this information, the

current PE calculates for each (i, j) pair which elements of its _d  fall i nside the rectangle,

`
ij, which is the region from which PEij wil l need to collect data (Fig. 4).  The indices of the

relevant elements of _d  are stored in an array, ijk .

• Step 5: Evaluation of the measurement operator.  The current PE calculates a mnd ×_ matrix,

_L , where _dn is the number of observations contained in its PE-private region.  The element

at the intersection of the pth row and ith column of _L is

),()(
fpf

i
p

piL xxy aa −+=
b

where pa is an interpolation operator which maps its argument to the location of 
b
pd , the pth

PE-private observation on the current PE (KR01a).

• Step 6: Calculation of 
b

z , the innovations with respect to the ensemble mean for the current

PE’s private region.  The innovation corresponding to 
b
pd  is

).(
fp

pp dz cbb
xa−=
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• Step 7: Gathering of dL , a mnd ×d  matrix analogous to eL , but corresponding to the ddn

measurements made within area f  (Fig. 4),  using the information recorded in the kij arrays.

The function pe_collect( ) is called NPE times.  Each call results in a  different PE

completing the collection of its version of dL .

• Step 8: Collection of the innovations, dz , required by each PE.  As for gathering dL ,

pe_collect( ) is called NPE times.  Each PE passes to pe_collect( ) the

elements of its ez  innovation vector required by the other PEs.

• Step 9: Calculation of the representer amplitudes by solving a local equation system

corresponding to the restriction to area f  of the global equations (2).  A local representer

matrix, ( )Tggg
LLR = , and its Hadamard product with a local compactly supported correlation

matrix, 
ggh

R• , are computed.  Then, local versions of the m right hand sides of (2b) are

calculated as miii ≤≤+− 1,eLz i .  Finally, the local equivalent of (2b) is solved m times,

yielding the ib  vectors for the current PE.  Since the effective rank of jR  is m rather than idn

and as a precaution against jR  losing its positive definiteness due to round off errors, LU

decomposition with partial pivoting  is used rather than Cholesky decomposition. If LU

decomposition fails, singular value decomposition (SVD) is used and near-zero singular

values of ii WR +  are ignored (KR01a).

• Step 10: Computation of the portions of the analysis increments corresponding to each PE-

private grid box.  A local version of (2c-e) is used.  Then, calls to halo( ) are used to fil l

the elements of fa xx − in the current PE’s halo regions.  It is more economical to obtain
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these elements in this manner than through the application of (2c-e) to each grid box situated

within the halo regions.

• Step 11: Transformation of the T, S, u and v increments from the analysis levels to averages

on the model layers.  This step is the reciprocal of step 1.  Following this, the analysis

increments are inserted gradually into each ensemble member’s state vector (Section 3h).

h. Miscellaneous features

1) Incremental analysis updating

Incremental analysis updating (IAU, e.g., Bloom et al. 1995) is used to insert the analysis

increments, fa xx − , into the model in a gradual manner.  Namely, the model partial differential

equations are replaced with

)5(,,
)(

))()((
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+

<≤
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where )( i
a tx and )( i

f tx  are the analysis and forecast at the time, ti, of the ith analysis.

 The IAU is used here for two reasons.  First, it lessens the unwanted effects of intermittent data

assimilation, specifically initialization shocks resulting from imbalances between the model

fields when the analysis increments are inserted directly.  Second, it allows the model to

gradually adjust the h field in response to the T, S, u and v increments without violating the

constraints imposed by the continuity equation.
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2) Measurement operator

In Section 4, the measurement functional, )(x
kl

, is simply a 2D interpolation operator which

maps the model temperature field—previously interpolated vertically to a set of levels which

include the depths of the TAO measurements—to the latitude and longitude of each observation

on the appropriate depth level.

Each PE performs the interpolation to the locations of the observations, md , contained within its

PE-private area.  Due to the presence of the halo regions, the horizontal interpolation can be

made without exchanging information between neighboring PEs.  Explicit detail of the

interpolation procedure is given in KR01a.

3) Superobservations

As is common when several measurements are made at the same location between successive

analyses, the observations are smoothed temporally.  This operation, sometimes referred to as

superobing and introduced by Lorenc (1981), combines the measurements using weights which

decrease exponentially with the time interval between the time of a measurement and that of an

analysis in which the measurement is processed.  For more detail, the reader is referred to

KR01a.

4) Pre-filtering

The purpose of the smoothing operator, ΞΞ in (1a), is to remove spurious short-range covariances

from the representer matrix, R.  These spurious elements result from the limited ensemble size

used to estimate the error distribution and from associated sampling errors.  Spurious long-range
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covariances are filtered out by imposing that the covariance functions be compactly supported

(Section 3d).

The ΞΞ operator relies on successive applications of a simple one-dimensional recursive (infinite

impulse response) filter which is applied horizontally in each layer to damp small-scale

variabil ity prior to calculating L and after subtraction of the ensemble mean from each ensemble

member’s state vector, as indicated in (1a).  The filter equations and response function are

discussed in KR01a.

4 Verification

a. Initial test

To test the MvEnKF, TAO temperature data are assimilated every five days into Poseidon for

January 1993 to March 1993 using a 40-member ensemble distributed on 256 PEs.  For

reference, a run without assimilation and one in which the data are assimilated using the UOI are

initialized with the initial ocean state corresponding to the MvEnKF central forecast (ensemble

member closest to the mean in terms of root mean square distance in the phase space spanned by

the model state variables) at the beginning of the experiment.

After the three-month assimilation period, the central forecast from the MvEnKF run is used to

initialize a 12-month hindcast run of Poseidon forced with climatological winds, SSTs and heat-
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fluxes, and without temperature assimilation.  Two similar runs are initialized with the states of

the UOI and control runs at the end of the assimilation period.

The purpose of the experiment is merely to verify that the various MvEnKF components are

working properly.  The assimilation of TAO temperature data into Poseidon and its impact on the

model currents, salinity and SSH are the focus of KR01c.

Figure 5 shows the evolution of the spatial-mean temperature anomaly at the TAO-mooring

locations, in the observations as well as in the MvEnKF, UOI and control runs.  The anomalies

shown are with respect to the mean seasonal cycle calculated at each mooring and at each

measurement depth for the 1990s.  For the MvEnKF run, the anomalies are those of the central

forecast.

Initially, the UOI and MvEnKF runs have the same positive bias as the control run, since the

same initial ocean state is used in the three runs.  After an initial adjustment, the mean anomalies

from the MvEnKF and UOI runs are very close to the corresponding observed anomalies during

the period with temperature assimilation.  In this respect, both methods are effective in correcting

the forecast-model bias of the control run.  The latter is between 0.5 and 1°C too warm during

the initial three months as well as during the following year.
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Figure 5. Evolution of spatial-mean temperature anomaly at the TAO-mooring locations during

the three-month period with TAO-temperature data assimilation and during the one-year hindcast

period without temperature assimilation.  The mean anomalies shown correspond to the TAO

observations (dotted—stars), the MvEnKF run (solid—diamonds), the UOI run (solid—circles)

and the free-model control run (solid—squares).
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When the temperature assimilation ceases, the UOI and MvEnKF runs start drifting back towards

the warm conditions of the control run.  However, even after a year with climatological forcing

and no data assimilation, the positive bias of the MvEnKF run (diamonds) is about one third that

of the control run (squares).  At that point, the level of bias seen in the UOI run (circles) is about

two thirds that seen in the control.

It appears from this experiment that (1) the assimilation of the TAO temperature data using

either method has a positive impact on the forecast-model bias for temperature and that (2) the

better results obtained here with the MvEnKF result in part from the underlying multivariate

correction in which not only T, but also S, u and v, are updated.  Definitive conclusions regarding

these two points are drawn in KR01c.

b. Effect of parallel decomposition on analysis

The parallel algorithm relies on the assumption that (1) the analysis calculations can be

partitioned resulting in each processor assimilating local data and that (2) the partitioning does

not have a deleterious effect on the analysis results.  The impact of performing a different local

inversion on each processor rather than inverting the global system matrix, WLLCS +•= T  in (2b),

is examined in this Section.

The local and global solutions are compared through a single temperature analysis using all the

TAO mooring data corresponding to January 1, 1997.  In this case, sufficiently few data are

involved (642 measurements) that (2b) can be solved on each PE without partitioning S.

Although the number of observations does not necessitate distributing the analysis computations,
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the example illustrates how the inversion would be distributed if there were too many data for

each PE to process them all at one time, as is the case for the TOPEX altimeter data assimilated

in KR01b.

Rather than 40 ensemble members and 256 PEs, as in Section 4a and in KR01b-c, 25 members

and 100 PEs are used here, as the corresponding resources suff ice for the purpose of this Section.

Figure 6 shows how imposing compact support to R impacts the sparseness of the global S.  It

also illustrates how the sparseness is exploited by distributing the analysis calculations in the

parallel algorithm.  Figures 7 and 8 illustrate the respective impacts on the assimilation

increments of using compactly supported background covariances and distributing the analysis

among PEs.  As is common, a diagonal W is assumed.

Figure 6a shows the global S, when the condition that it be compactly supported is not imposed

( WLL +T  in 1c).  Figure 7a shows an equatorial section through the corresponding temperature

increment.  The corresponding sea-surface temperature (SST) increment is shown in Figure 8a.

When the background covariances are compactly supported, the global S ( WLLC +• T  in 2b),

becomes sparse as Figure 6b illustrates.  The most obvious effect of the Hadamard product of C

and R on the assimilation increment is that the latter is tapered away from the Equator where no

measurements are available (Fig. 8b).  The effect  of the Hadamard product on the vertical

structure of the temperature increment is not as dramatic (Fig. 7b) since the data come from

several depths between the surface and 500 meters. The issue of why applying the Hadamard
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product, thus solving (2b), is a better idea than solving (1c) is addressed by Houtemaker and

Mitchell (2001) in the context of a three-level QG model.  They show that the EnKF performs

best for small ensembles when the Hadamard product is applied and that the optimal correlation

scales are inversely proportional to the ensemble size.

When the analysis is distributed, the calculation of a local S on each PE amounts to sub-sampling

the global compactly supported S of Figure 6b.  On each PE, the sub-sampling results in a local S

which is less sparse than the global S because it does not contain covariances between remote

locations which are identically zero as a result of the Hadamard product.  Figures 6c-e show

local S matrices on three randomly chosen PEs.

Comparing Figure 7c and Figure 7b or Figure 8c and Figure 8b shows that the analysis

increments obtained when the analysis calculations are distributed are virtually identical to those

obtained with (2), even though the global inversion (2b) is bypassed.  Indeed, the root mean

square difference between the Equatorial temperature increments of Figures 7b and 7c is

4100.6 −× C.  That between the SST increments of Figures 8b and 8c is 3100.1 −× C.  Thus, the

tremendous computational savings associated with substituting the local S for the global S occur

with a negligible impact on the quality of the analysis.
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Figure 6.  Structure of error-covariance matrices in observation space for one TAO temperature

analysis corresponding to January 1, 1997.  (a) Global system matrix, S, without compact

support.  (b) Global compactly supported S.  (c-e) Example PE-local S matrices corresponding to

PE 8 for which 247=dn , PE 28 ( 356=dn ) and PE 86 ( 160=dn ).
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Figure 7.  Equatorial sections through the temperature-field part of the analysis increments (°C)

obtained after inversion of the matrices shown in Fig.6. (a) Global inversion without compactly

supported covariances. (b) Global inversion with compact support. (c) Distributed inversion with

compact support.
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Figure 8.  Same as Fig. 7 for the sea-surface temperature increments.
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c. Scaling

This Section discusses the two main current limitations of the parallel MvEnKF: (1) that it scales

poorly beyond 100 PEs in the present machine (CRAY T3E-600 with 128MB RAM per

PE)/model configuration and (2) that the maximum ensemble size attainable is dictated by the

memory of the individual PEs on a massively parallel processor (MPP) with distributed memory.

Since the expected lifetime of a modern supercomputer is about two years, it is unlikely that

these limitations will impose the same restrictions by the time the MvEnKF is used with the

global OGCM to initialize the NSIPP production forecasts.  Therefore, the software engineering

approach used to implement the MvEnKF has focused on portabil ity, modularity and object-

oriented design, rather than on optimally using the resources of the current platform.

Figure 9a shows how mt , the time spent per ensemble member in a five-day analysis cycle

involving the assimilation of TAO temperature data, scales with PEN  (diamonds).  The dashed

curve labeled “EnKF perfect” extrapolates the value of mt  for 16 PEs in the range from 16 to 256

PEs, assuming linear scaling.  According to Amdhal’s law, such scaling can never be achieved.

Instead, the time used by an algorithm on p PEs is given by )/)1(( pfftt sp −+= , where st  is

the time used by the same algorithm on a serial machine and f is the fraction of the operations

that must be performed sequentially.

The observed scaling is not easily compared with theory.  First, because st  is unknown.  Second,

because f depends on PEN .  Still, mt  decreases by a mere 16% when PEN doubles from 128 to

256.  Rather, mt  decreases by 45% between 16 PEs and 32 PEs.  This is indicative of saturation.
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The horizontal resolution of the Pacific basin version of Poseidon used in these experiments is

not high enough for the distribution of its state vector over more than 100 PES to be optimal.  In

contrast, the global version of Poseidon to which the MvEnKF wil l be applied next has enough

state variables to warrant its distribution over more than 100 PEs..  For reference, the observed

and perfect scaling curves are also shown for the UOI.  In this case, the saturation becomes

apparent with 64 PEs at the current model resolution.  For each value of PEN , The UOI timing

number is higher than the corresponding MvEnKF number because the latter corresponds to the

total time divided by the ensemble size ( maxm  below).

In figure 9b, the largest ensemble size allowed by the individual-PE memory on the CRAY T3E-

600, maxm , is shown as a function of PEN .  For each value of PEN , the timing number in Figure

9a corresponds to maxm  ensemble members, so that memory is saturated.  Between 16 PEs and

128 PEs, maxm  increases approximately linearly from 6 to 36.  On 256 PEs, maxm is 46.

To increase maxm for given PEN , one could simultaneously run several small ensembles on

smaller PE partitions rather than a single ensemble on a large partition.  However, this would

require  a communication mechanism not currently supported by the GEMS library.

Alternatively, running the MvEnKF on a platform with globally addressable memory would also

allow larger ensemble sizes.  The 40-member ensembles used in KR01b-c and in Section 4a

achieve a good compromise between accuracy and keeping the cost of the data assimilation

within acceptable limits.
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Figure 9.  (a) Time per ensemble member required to complete one five-day analysis cycle when

TAO temperature data are assimilated ( mt  in text).  The curves labeled “perfect” correspond to

an unattainable linear scaling.  (b) Largest ensemble size possible as a function of PEN ( maxm  in

text) on the CRAY T3E-600.
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5 Summary

This article describes the MvEnKF design and its parallel implementation for the Poseidon

OGCM.  A domain decomposition whereby the memory of each PE contains the portion of every

ensemble member’s state vector that corresponds to the PE’s position on a 2D horizontal lattice

is used.  The assimilation is parallelized through a localization of the forecast error-covariance

matrix.  When data become available to assimilate, each PE collects from neighboring PEs the

innovations and measurement-functional elements according to the localization strategy.  The

covariance functions are given compact support by means of a Hadamard product of the

background-error covariance matrix with an idealized locally supported correlation function.  In

EnKF implementations involving low-resolution models, one has the freedom to work with

ensemble sizes on the order of hundreds or thousands.  Rather, with the state-vector size of

approximately two mill ion variables considered here, memory, communications between PEs

and operation count limit the ensemble size.  In most instances, 40 ensemble members

distributed over 256 CRAY T3E PEs are used.

Besides the details of the observing system implementation, the impact of the background-

covariance localization on the analysis increments is discussed, as well as performance issues.

To confirm that the data assimilation system is working properly, the discussion also includes

results from an initial test run in which the MvEnKF is used to assimilate TAO temperature data

into Poseidon.
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Some issues that must be addressed to improve the MvEnKF are the deficiency of the system-

noise model which only accounts for forcing errors, the problem of ensemble initialization which

can be addressed using a perturbation-breeding approach, and the memory limitations inherent

with running the MvEnKF on a MPP with distributed memory.  On a machine with globally

addressable memory, the memory-imposed constraints will be less severe.  Fortunately, the

modular, object oriented approach used to implement the MvEnKF does not tie it to the CRAY

T3E architecture.
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